Best Web-Based Large Language Models of 2025 - Page 11

Find and compare the best Web-Based Large Language Models in 2025

Use the comparison tool below to compare the top Web-Based Large Language Models on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    GLM-4.5 Reviews
    Z.ai has unveiled its latest flagship model, GLM-4.5, which boasts an impressive 355 billion total parameters (with 32 billion active) and is complemented by the GLM-4.5-Air variant, featuring 106 billion total parameters (12 billion active), designed to integrate sophisticated reasoning, coding, and agent-like functions into a single framework. This model can switch between a "thinking" mode for intricate, multi-step reasoning and tool usage and a "non-thinking" mode that facilitates rapid responses, accommodating a context length of up to 128K tokens and enabling native function invocation. Accessible through the Z.ai chat platform and API, and with open weights available on platforms like HuggingFace and ModelScope, GLM-4.5 is adept at processing a wide range of inputs for tasks such as general problem solving, common-sense reasoning, coding from the ground up or within existing frameworks, as well as managing comprehensive workflows like web browsing and slide generation. The architecture is underpinned by a Mixture-of-Experts design, featuring loss-free balance routing, grouped-query attention mechanisms, and an MTP layer that facilitates speculative decoding, ensuring it meets enterprise-level performance standards while remaining adaptable to various applications. As a result, GLM-4.5 sets a new benchmark for AI capabilities across numerous domains.
  • 2
    Claude Opus 4.1 Reviews
    Claude Opus 4.1 represents a notable incremental enhancement over its predecessor, Claude Opus 4, designed to elevate coding, agentic reasoning, and data-analysis capabilities while maintaining the same level of deployment complexity. This version boosts coding accuracy to an impressive 74.5 percent on SWE-bench Verified and enhances the depth of research and detailed tracking for agentic search tasks. Furthermore, GitHub has reported significant advancements in multi-file code refactoring, and Rakuten Group emphasizes its ability to accurately identify precise corrections within extensive codebases without introducing any bugs. Independent benchmarks indicate that junior developer test performance has improved by approximately one standard deviation compared to Opus 4, reflecting substantial progress consistent with previous Claude releases. Users can access Opus 4.1 now, as it is available to paid subscribers of Claude, integrated into Claude Code, and can be accessed through the Anthropic API (model ID claude-opus-4-1-20250805), as well as via platforms like Amazon Bedrock and Google Cloud Vertex AI. Additionally, it integrates effortlessly into existing workflows, requiring no further setup beyond the selection of the updated model, thus enhancing the overall user experience and productivity.
  • 3
    GPT-5 pro Reviews
    OpenAI’s GPT-5 Pro represents the pinnacle of AI reasoning power, offering enhanced capabilities for solving the toughest problems with unparalleled precision and depth. This version leverages extensive parallel compute resources to deliver highly accurate, detailed answers that outperform prior models across challenging scientific, medical, mathematical, and programming benchmarks. GPT-5 Pro is particularly effective in handling multi-step, complex queries that require sustained focus and logical reasoning. Experts consistently rate its outputs as more comprehensive, relevant, and error-resistant than those from standard GPT-5. It seamlessly integrates with existing ChatGPT offerings, allowing Pro users to access this powerful reasoning mode for demanding tasks. The model’s ability to dynamically allocate “thinking” resources ensures efficient and expert-level responses. Additionally, GPT-5 Pro features improved safety, reduced hallucinations, and better transparency about its capabilities and limitations. It empowers professionals and researchers to push the boundaries of what AI can achieve.
  • 4
    GPT-5 thinking Reviews
    GPT-5 Thinking is a specialized reasoning component of the GPT-5 platform that activates when queries require deeper thought and complex problem-solving. Unlike the quick-response GPT-5 base model, GPT-5 Thinking carefully processes multifaceted questions, delivering richer and more precise answers. This enhanced reasoning mode excels in reducing factual errors and hallucinations by analyzing information more thoroughly and applying multi-step logic. It also improves transparency by clearly stating when certain tasks cannot be completed due to missing data or unsupported requests. Safety is a core focus, with GPT-5 Thinking trained to balance helpfulness and risk, especially in sensitive or dual-use scenarios. The model seamlessly switches between fast and deep thinking based on conversation complexity and user intent. With improved instruction following and reduced sycophancy, GPT-5 Thinking offers more natural, confident, and thoughtful interactions. It is accessible to all users as part of GPT-5’s unified system, enhancing both everyday productivity and expert applications.
  • 5
    MAI-1-preview Reviews
    The MAI-1 Preview marks the debut of Microsoft AI's fully in-house developed foundation model, utilizing a mixture-of-experts architecture for streamlined performance. This model has undergone extensive training on around 15,000 NVIDIA H100 GPUs, equipping it to adeptly follow user instructions and produce relevant text responses for common inquiries, thus illustrating a prototype for future Copilot functionalities. Currently accessible for public testing on LMArena, MAI-1 Preview provides an initial look at the platform's direction, with plans to introduce select text-driven applications in Copilot over the next few weeks aimed at collecting user insights and enhancing its capabilities. Microsoft emphasizes its commitment to integrating its proprietary models, collaborations with partners, and advancements from the open-source sector to dynamically enhance user experiences through millions of distinct interactions every day. This innovative approach illustrates Microsoft's dedication to continuously evolving its AI offerings.
  • 6
    Claude Sonnet 4.5 Reviews
    Claude Sonnet 4.5 represents Anthropic's latest advancement in AI, crafted to thrive in extended coding environments, complex workflows, and heavy computational tasks while prioritizing safety and alignment. It sets new benchmarks with its top-tier performance on the SWE-bench Verified benchmark for software engineering and excels in the OSWorld benchmark for computer usage, demonstrating an impressive capacity to maintain concentration for over 30 hours on intricate, multi-step assignments. Enhancements in tool management, memory capabilities, and context interpretation empower the model to engage in more advanced reasoning, leading to a better grasp of various fields, including finance, law, and STEM, as well as a deeper understanding of coding intricacies. The system incorporates features for context editing and memory management, facilitating prolonged dialogues or multi-agent collaborations, while it also permits code execution and the generation of files within Claude applications. Deployed at AI Safety Level 3 (ASL-3), Sonnet 4.5 is equipped with classifiers that guard against inputs or outputs related to hazardous domains and includes defenses against prompt injection, ensuring a more secure interaction. This model signifies a significant leap forward in the intelligent automation of complex tasks, aiming to reshape how users engage with AI technologies.
  • 7
    GLM-4.6 Reviews
    GLM-4.6 builds upon the foundations laid by its predecessor, showcasing enhanced reasoning, coding, and agent capabilities, resulting in notable advancements in inferential accuracy, improved tool usage during reasoning tasks, and a more seamless integration within agent frameworks. In comprehensive benchmark evaluations that assess reasoning, coding, and agent performance, GLM-4.6 surpasses GLM-4.5 and competes robustly against other models like DeepSeek-V3.2-Exp and Claude Sonnet 4, although it still lags behind Claude Sonnet 4.5 in terms of coding capabilities. Furthermore, when subjected to practical tests utilizing an extensive “CC-Bench” suite that includes tasks in front-end development, tool creation, data analysis, and algorithmic challenges, GLM-4.6 outperforms GLM-4.5 while nearing parity with Claude Sonnet 4, achieving victory in approximately 48.6% of direct comparisons and demonstrating around 15% improved token efficiency. This latest model is accessible through the Z.ai API, providing developers the flexibility to implement it as either an LLM backend or as the core of an agent within the platform's API ecosystem. In addition, its advancements could significantly enhance productivity in various application domains, making it an attractive option for developers looking to leverage cutting-edge AI technology.
  • 8
    GPT-5.1 Instant Reviews
    GPT-5.1 Instant is an advanced AI model tailored for everyday users, merging rapid response times with enhanced conversational warmth. Its adaptive reasoning capability allows it to determine the necessary computational effort for tasks, ensuring swift responses while maintaining a deep level of understanding. By focusing on improved instruction adherence, users can provide detailed guidance and anticipate reliable execution. Additionally, the model features expanded personality controls, allowing the chat tone to be adjusted to Default, Friendly, Professional, Candid, Quirky, or Efficient, alongside ongoing trials of more nuanced voice modulation. The primary aim is to create interactions that feel more organic and less mechanical, all while ensuring robust intelligence in writing, coding, analysis, and reasoning tasks. Furthermore, GPT-5.1 Instant intelligently manages user requests through the main interface, deciding whether to employ this version or the more complex “Thinking” model based on the context of the query. Ultimately, this innovative approach enhances user experience by making interactions more engaging and tailored to individual preferences.
  • 9
    GPT-5.1 Thinking Reviews
    GPT-5.1 Thinking represents an evolved reasoning model within the GPT-5.1 lineup, engineered to optimize "thinking time" allocation according to the complexity of prompts, allowing for quicker responses to straightforward inquiries while dedicating more resources to tackle challenging issues. In comparison to its earlier version, it demonstrates approximately double the speed on simpler tasks and takes twice as long for more complex ones. The model emphasizes clarity in its responses, minimizing the use of jargon and undefined terminology, which enhances the accessibility and comprehensibility of intricate analytical tasks. It adeptly modifies its reasoning depth, ensuring a more effective equilibrium between rapidity and thoroughness, especially when addressing technical subjects or multi-step inquiries. By fusing substantial reasoning power with enhanced clarity, GPT-5.1 Thinking emerges as an invaluable asset for handling complicated assignments, including in-depth analysis, programming, research, or technical discussions, while simultaneously decreasing unnecessary delays for routine requests. This improved efficiency not only benefits users seeking quick answers but also supports those engaged in more demanding cognitive tasks.
  • 10
    Gemini 3 Deep Think Reviews
    Gemini 3, the latest model from Google DeepMind, establishes a new standard for artificial intelligence by achieving cutting-edge reasoning capabilities and multimodal comprehension across various formats including text, images, and videos. It significantly outperforms its earlier version in critical AI assessments and showcases its strengths in intricate areas like scientific reasoning, advanced programming, spatial reasoning, and visual or video interpretation. The introduction of the innovative “Deep Think” mode takes performance to an even higher level, demonstrating superior reasoning abilities for exceptionally difficult tasks and surpassing the Gemini 3 Pro in evaluations such as Humanity’s Last Exam and ARC-AGI. Now accessible within Google’s ecosystem, Gemini 3 empowers users to engage in learning, developmental projects, and strategic planning with unprecedented sophistication. With context windows extending up to one million tokens and improved media-processing capabilities, along with tailored configurations for various tools, the model enhances precision, depth, and adaptability for practical applications, paving the way for more effective workflows across diverse industries. This advancement signals a transformative shift in how AI can be leveraged for real-world challenges.
  • 11
    Claude Opus 4.5 Reviews
    Anthropic’s release of Claude Opus 4.5 introduces a frontier AI model that excels at coding, complex reasoning, deep research, and long-context tasks. It sets new performance records on real-world engineering benchmarks, handling multi-system debugging, ambiguous instructions, and cross-domain problem solving with greater precision than earlier versions. Testers and early customers reported that Opus 4.5 “just gets it,” offering creative reasoning strategies that even benchmarks fail to anticipate. Beyond raw capability, the model brings stronger alignment and safety, with notable advances in prompt-injection resistance and behavior consistency in high-stakes scenarios. The Claude Developer Platform also gains richer controls including effort tuning, multi-agent orchestration, and context management improvements that significantly boost efficiency. Claude Code becomes more powerful with enhanced planning abilities, multi-session desktop support, and better execution of complex development workflows. In the Claude apps, extended memory and automatic context summarization enable longer, uninterrupted conversations. Together, these upgrades showcase Opus 4.5 as a highly capable, secure, and versatile model designed for both professional workloads and everyday use.
  • 12
    Amazon Nova 2 Lite Reviews
    The Nova 2 Lite is an efficient and rapid reasoning model specifically crafted to manage typical AI tasks related to text, images, and video. It produces coherent and context-sensitive responses while allowing users to adjust the level of internal reasoning, known as “thinking depth,” before arriving at an answer. This versatility empowers teams to opt for quicker responses or more thorough resolutions based on their specific needs. It is particularly effective in applications such as customer service chatbots, automated documentation processes, and overall business workflow enhancement. Nova 2 Lite excels in standard evaluation tests, often matching or surpassing other similar compact models in various benchmark assessments, which highlights its dependable understanding and quality of responses. Its notable capabilities encompass analyzing intricate documents, extracting precise insights from video materials, generating functional code, and providing well-grounded answers based on the information presented. Additionally, its adaptability makes it a valuable asset for diverse industries seeking to optimize their AI-driven solutions.
  • 13
    GPT-5.2 Reviews
    GPT-5.2 marks a new milestone in the evolution of the GPT-5 series, bringing heightened intelligence, richer context understanding, and smoother conversational behavior. The updated architecture introduces multiple enhanced variants that work together to produce clearer reasoning and more accurate interpretations of user needs. GPT-5.2 Instant remains the main model for everyday interactions, now upgraded with faster response times, stronger instruction adherence, and more reliable contextual continuity. For users tackling complex or layered tasks, GPT-5.2 Thinking provides deeper cognitive structure, offering step-by-step explanations, stronger logical flow, and improved endurance across long-form reasoning challenges. The platform automatically determines which model variant is optimal for any query, ensuring users always benefit from the most appropriate capabilities. These advancements reduce friction, simplify workflows, and produce answers that feel more grounded and intention-aware. In addition to intelligence upgrades, GPT-5.2 emphasizes conversational naturalness, making exchanges feel more intuitive and humanlike. Overall, this release delivers a more capable, responsive, and adaptive AI experience across all forms of interaction.
  • 14
    BLOOM Reviews
    BLOOM is a sophisticated autoregressive language model designed to extend text based on given prompts, leveraging extensive text data and significant computational power. This capability allows it to generate coherent and contextually relevant content in 46 different languages, along with 13 programming languages, often making it difficult to differentiate its output from that of a human author. Furthermore, BLOOM's versatility enables it to tackle various text-related challenges, even those it has not been specifically trained on, by interpreting them as tasks of text generation. Its adaptability makes it a valuable tool for a range of applications across multiple domains.
  • 15
    NVIDIA NeMo Megatron Reviews
    NVIDIA NeMo Megatron serves as a comprehensive framework designed for the training and deployment of large language models (LLMs) that can range from billions to trillions of parameters. As a integral component of the NVIDIA AI platform, it provides a streamlined, efficient, and cost-effective solution in a containerized format for constructing and deploying LLMs. Tailored for enterprise application development, the framework leverages cutting-edge technologies stemming from NVIDIA research and offers a complete workflow that automates distributed data processing, facilitates the training of large-scale custom models like GPT-3, T5, and multilingual T5 (mT5), and supports model deployment for large-scale inference. The process of utilizing LLMs becomes straightforward with the availability of validated recipes and predefined configurations that streamline both training and inference. Additionally, the hyperparameter optimization tool simplifies the customization of models by automatically exploring the optimal hyperparameter configurations, enhancing performance for training and inference across various distributed GPU cluster setups. This approach not only saves time but also ensures that users can achieve superior results with minimal effort.
  • 16
    ALBERT Reviews
    ALBERT is a self-supervised Transformer architecture that undergoes pretraining on a vast dataset of English text, eliminating the need for manual annotations by employing an automated method to create inputs and corresponding labels from unprocessed text. This model is designed with two primary training objectives in mind. The first objective, known as Masked Language Modeling (MLM), involves randomly obscuring 15% of the words in a given sentence and challenging the model to accurately predict those masked words. This approach sets it apart from recurrent neural networks (RNNs) and autoregressive models such as GPT, as it enables ALBERT to capture bidirectional representations of sentences. The second training objective is Sentence Ordering Prediction (SOP), which focuses on the task of determining the correct sequence of two adjacent text segments during the pretraining phase. By incorporating these dual objectives, ALBERT enhances its understanding of language structure and contextual relationships. This innovative design contributes to its effectiveness in various natural language processing tasks.
  • 17
    ERNIE 3.0 Titan Reviews
    Pre-trained language models have made significant strides, achieving top-tier performance across multiple Natural Language Processing (NLP) applications. The impressive capabilities of GPT-3 highlight how increasing the scale of these models can unlock their vast potential. Recently, a comprehensive framework known as ERNIE 3.0 was introduced to pre-train large-scale models enriched with knowledge, culminating in a model boasting 10 billion parameters. This iteration of ERNIE 3.0 has surpassed the performance of existing leading models in a variety of NLP tasks. To further assess the effects of scaling, we have developed an even larger model called ERNIE 3.0 Titan, which consists of up to 260 billion parameters and is built on the PaddlePaddle platform. Additionally, we have implemented a self-supervised adversarial loss alongside a controllable language modeling loss, enabling ERNIE 3.0 Titan to produce texts that are both reliable and modifiable, thus pushing the boundaries of what these models can achieve. This approach not only enhances the model's capabilities but also opens new avenues for research in text generation and control.
  • 18
    EXAONE Reviews
    EXAONE is an advanced language model created by LG AI Research, designed to cultivate "Expert AI" across various fields. To enhance EXAONE's capabilities, the Expert AI Alliance was established, bringing together prominent companies from diverse sectors to collaborate. These partner organizations will act as mentors, sharing their expertise, skills, and data to support EXAONE in becoming proficient in specific domains. Much like a college student who has finished general courses, EXAONE requires further focused training to achieve true expertise. LG AI Research has already showcased EXAONE's potential through practical implementations, including Tilda, an AI human artist that made its debut at New York Fashion Week, and AI tools that summarize customer service interactions as well as extract insights from intricate academic papers. This initiative not only highlights the innovative applications of AI but also emphasizes the importance of collaborative efforts in advancing technology.
  • 19
    Jurassic-1 Reviews
    Jurassic-1 offers two model sizes, with the Jumbo variant being the largest at 178 billion parameters, representing the pinnacle of complexity in language models released for developers. Currently, AI21 Studio is in an open beta phase, inviting users to register and begin exploring Jurassic-1 through an accessible API and an interactive web platform. At AI21 Labs, our goal is to revolutionize how people engage with reading and writing by integrating machines as cognitive collaborators, a vision that requires collective effort to realize. Our exploration of language models dates back to what we refer to as our Mesozoic Era (2017 😉). Building upon this foundational research, Jurassic-1 marks the inaugural series of models we are now offering for broad public application. As we move forward, we are excited to see how users will leverage these advancements in their own creative processes.
  • 20
    Alpaca Reviews

    Alpaca

    Stanford Center for Research on Foundation Models (CRFM)

    Instruction-following models like GPT-3.5 (text-DaVinci-003), ChatGPT, Claude, and Bing Chat have seen significant advancements in their capabilities, leading to a rise in their usage among individuals in both personal and professional contexts. Despite their growing popularity and integration into daily tasks, these models are not without their shortcomings, as they can sometimes disseminate inaccurate information, reinforce harmful stereotypes, and use inappropriate language. To effectively tackle these critical issues, it is essential for researchers and scholars to become actively involved in exploring these models further. However, conducting research on instruction-following models within academic settings has posed challenges due to the unavailability of models with comparable functionality to proprietary options like OpenAI’s text-DaVinci-003. In response to this gap, we are presenting our insights on an instruction-following language model named Alpaca, which has been fine-tuned from Meta’s LLaMA 7B model, aiming to contribute to the discourse and development in this field. This initiative represents a step towards enhancing the understanding and capabilities of instruction-following models in a more accessible manner for researchers.
  • 21
    GradientJ Reviews
    GradientJ offers a comprehensive suite of tools designed to facilitate the rapid development of large language model applications, ensuring their long-term management. You can explore and optimize your prompts by saving different versions and evaluating them against established benchmarks. Additionally, you can streamline the orchestration of intricate applications by linking prompts and knowledge sources into sophisticated APIs. Moreover, boosting the precision of your models is achievable through the incorporation of your unique data assets, thus enhancing overall performance. This platform empowers developers to innovate and refine their models continuously.
  • 22
    PanGu Chat Reviews
    Huawei has created an AI chatbot known as PanGu Chat, which is capable of engaging in human-like conversations and providing answers to inquiries in a manner similar to ChatGPT. This technology aims to enhance user interaction by simulating natural dialogue.
  • 23
    LTM-1 Reviews
    Magic’s LTM-1 technology facilitates context windows that are 50 times larger than those typically used in transformer models. As a result, Magic has developed a Large Language Model (LLM) that can effectively process vast amounts of contextual information when providing suggestions. This advancement allows our coding assistant to access and analyze your complete code repository. With the ability to reference extensive factual details and their own prior actions, larger context windows can significantly enhance the reliability and coherence of AI outputs. We are excited about the potential of this research to further improve user experience in coding assistance applications.
  • 24
    Reka Reviews
    Our advanced multimodal assistant is meticulously crafted with a focus on privacy, security, and operational efficiency. Yasa is trained to interpret various forms of content, including text, images, videos, and tabular data, with plans to expand to additional modalities in the future. It can assist you in brainstorming for creative projects, answering fundamental questions, or extracting valuable insights from your internal datasets. With just a few straightforward commands, you can generate, train, compress, or deploy it on your own servers. Our proprietary algorithms enable you to customize the model according to your specific data and requirements. We utilize innovative techniques that encompass retrieval, fine-tuning, self-supervised instruction tuning, and reinforcement learning to optimize our model based on your unique datasets, ensuring that it meets your operational needs effectively. In doing so, we aim to enhance user experience and deliver tailored solutions that drive productivity and innovation.
  • 25
    Samsung Gauss Reviews
    Samsung Gauss is an innovative AI model crafted by Samsung Electronics, designed to serve as a large language model that has been trained on an extensive array of text and code. This advanced model is capable of producing coherent text, translating various languages, creating diverse forms of artistic content, and providing informative answers to a wide range of inquiries. Although Samsung Gauss is still being refined, it has already demonstrated proficiency in a variety of tasks, such as: Following directives and fulfilling requests with careful consideration. Offering thorough and insightful responses to questions, regardless of their complexity or peculiarity. Crafting different types of creative outputs, which include poems, programming code, scripts, musical compositions, emails, and letters. To illustrate its capabilities, Samsung Gauss can translate text among numerous languages, including English, French, German, Spanish, Chinese, Japanese, and Korean, while also generating functional code tailored to specific programming needs. Ultimately, as development continues, the potential applications of Samsung Gauss are bound to expand even further.