Best Free AI Models of 2025 - Page 7

Use the comparison tool below to compare the top Free AI Models on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Hermes 4 Reviews

    Hermes 4

    Nous Research

    Free
    Hermes 4 represents the cutting-edge advancement in Nous Research's series of neutrally aligned, steerable foundational models, featuring innovative hybrid reasoners that can fluidly transition between creative, expressive outputs and concise, efficient responses tailored to user inquiries. This model is engineered to prioritize user and system commands over any corporate ethical guidelines, resulting in interactions that are more conversational and engaging, avoiding a tone that feels overly authoritative or ingratiating, while fostering opportunities for roleplay and imaginative engagement. By utilizing a specific tag within prompts, users can activate a deeper level of reasoning that is resource-intensive, allowing them to address intricate challenges, all while maintaining efficiency for simpler tasks. With a training dataset 50 times larger than that of its predecessor, Hermes 3, much of which was synthetically produced using Atropos, Hermes 4 exhibits remarkable enhancements in performance. Additionally, this evolution not only improves accuracy but also broadens the range of applications for which the model can be effectively employed.
  • 2
    K2 Think Reviews

    K2 Think

    Institute of Foundation Models

    Free
    K2 Think represents a groundbreaking open-source advanced reasoning model that has been developed in collaboration between the Institute of Foundation Models at MBZUAI and G42. Even with its relatively modest 32 billion parameters, K2 Think achieves performance that rivals that of leading models with significantly larger parameter counts. Its strength lies in mathematical reasoning, where it has secured top rankings on prestigious benchmarks such as AIME ’24/’25, HMMT ’25, and OMNI-Math-HARD. This model is part of a wider initiative of UAE-developed open models, which includes Jais (for Arabic), NANDA (for Hindi), and SHERKALA (for Kazakh), and it builds upon the groundwork established by the K2-65B, a fully reproducible open-source foundation model released in 2024. K2 Think is crafted to be open, efficient, and adaptable, featuring a web app interface that facilitates user exploration, and its innovative approach to parameter positioning marks a significant advancement in the realm of compact architectures for high-level AI reasoning. Additionally, its development highlights a commitment to enhancing access to state-of-the-art AI technologies in various languages and domains.
  • 3
    Ray3 Reviews

    Ray3

    Luma AI

    $9.99 per month
    Ray3, developed by Luma Labs, is a cutting-edge video generation tool designed to empower creators in crafting visually compelling narratives with professional-grade quality. This innovative model allows for the production of native 16-bit High Dynamic Range (HDR) videos, which results in enhanced color vibrancy, richer contrasts, and a streamlined workflow akin to those found in high-end studios. It leverages advanced physics and ensures greater consistency in elements such as motion, lighting, and reflections, while also offering users visual controls to refine their projects. Additionally, Ray3 features a draft mode that facilitates rapid exploration of concepts, which can later be refined into stunning 4K HDR outputs. The model is adept at interpreting prompts with subtlety, reasoning about creative intent, and conducting early self-evaluations of drafts to make necessary adjustments for more precise scene and motion representation. Moreover, it includes capabilities such as keyframe support, looping and extending functions, upscaling options, and the ability to export frames, making it an invaluable asset for seamless integration into professional creative processes. By harnessing these features, creators can elevate their storytelling through dynamic visual experiences that resonate with their audiences.
  • 4
    DeepSeek-V3.1-Terminus Reviews
    DeepSeek has launched DeepSeek-V3.1-Terminus, an upgrade to the V3.1 architecture that integrates user suggestions to enhance output stability, consistency, and overall agent performance. This new version significantly decreases the occurrences of mixed Chinese and English characters as well as unintended distortions, leading to a cleaner and more uniform language generation experience. Additionally, the update revamps both the code agent and search agent subsystems to deliver improved and more dependable performance across various benchmarks. DeepSeek-V3.1-Terminus is available as an open-source model, with its weights accessible on Hugging Face, making it easier for the community to leverage its capabilities. The structure of the model remains consistent with DeepSeek-V3, ensuring it is compatible with existing deployment strategies, and updated inference demonstrations are provided for users to explore. Notably, the model operates at a substantial scale of 685B parameters and supports multiple tensor formats, including FP8, BF16, and F32, providing adaptability in different environments. This flexibility allows developers to choose the most suitable format based on their specific needs and resource constraints.
  • 5
    Qwen3-Max Reviews
    Qwen3-Max represents Alibaba's cutting-edge large language model, featuring a staggering trillion parameters aimed at enhancing capabilities in tasks that require agency, coding, reasoning, and managing lengthy contexts. This model is an evolution of the Qwen3 series, leveraging advancements in architecture, training methods, and inference techniques; it integrates both thinker and non-thinker modes, incorporates a unique “thinking budget” system, and allows for dynamic mode adjustments based on task complexity. Capable of handling exceptionally lengthy inputs, processing hundreds of thousands of tokens, it also supports tool invocation and demonstrates impressive results across various benchmarks, including coding, multi-step reasoning, and agent evaluations like Tau2-Bench. While the initial version prioritizes instruction adherence in a non-thinking mode, Alibaba is set to introduce reasoning functionalities that will facilitate autonomous agent operations in the future. In addition to its existing multilingual capabilities and extensive training on trillions of tokens, Qwen3-Max is accessible through API interfaces that align seamlessly with OpenAI-style functionalities, ensuring broad usability across applications. This comprehensive framework positions Qwen3-Max as a formidable player in the realm of advanced artificial intelligence language models.
  • 6
    DeepSeek-V3.2-Exp Reviews
    Introducing DeepSeek-V3.2-Exp, our newest experimental model derived from V3.1-Terminus, featuring the innovative DeepSeek Sparse Attention (DSA) that enhances both training and inference speed for lengthy contexts. This DSA mechanism allows for precise sparse attention while maintaining output quality, leading to improved performance for tasks involving long contexts and a decrease in computational expenses. Benchmark tests reveal that V3.2-Exp matches the performance of V3.1-Terminus while achieving these efficiency improvements. The model is now fully operational across app, web, and API platforms. Additionally, to enhance accessibility, we have slashed DeepSeek API prices by over 50% effective immediately. During a transition period, users can still utilize V3.1-Terminus via a temporary API endpoint until October 15, 2025. DeepSeek encourages users to share their insights regarding DSA through our feedback portal. Complementing the launch, DeepSeek-V3.2-Exp has been made open-source, with model weights and essential technology—including crucial GPU kernels in TileLang and CUDA—accessible on Hugging Face. We look forward to seeing how the community engages with this advancement.
  • 7
    gpt-4o-mini Realtime Reviews
    The gpt-4o-mini-realtime-preview model is a streamlined and economical variant of GPT-4o, specifically crafted for real-time interaction in both speech and text formats with minimal delay. It is capable of processing both audio and text inputs and outputs, facilitating “speech in, speech out” dialogue experiences through a consistent WebSocket or WebRTC connection. In contrast to its larger counterparts in the GPT-4o family, this model currently lacks support for image and structured output formats, concentrating solely on immediate voice and text applications. Developers have the ability to initiate a real-time session through the /realtime/sessions endpoint to acquire a temporary key, allowing them to stream user audio or text and receive immediate responses via the same connection. This model belongs to the early preview family (version 2024-12-17) and is primarily designed for testing purposes and gathering feedback, rather than handling extensive production workloads. The usage comes with certain rate limitations and may undergo changes during the preview phase. Its focus on audio and text modalities opens up possibilities for applications like conversational voice assistants, enhancing user interaction in a variety of settings. As technology evolves, further enhancements and features may be introduced to enrich user experiences.
  • 8
    Hunyuan-Vision-1.5 Reviews
    HunyuanVision, an innovative vision-language model created by Tencent's Hunyuan team, employs a mamba-transformer hybrid architecture that excels in performance and offers efficient inference for multimodal reasoning challenges. The latest iteration, Hunyuan-Vision-1.5, focuses on the concept of “thinking on images,” enabling it to not only comprehend the interplay of visual and linguistic content but also engage in advanced reasoning that includes tasks like cropping, zooming, pointing, box drawing, or annotating images for enhanced understanding. This model is versatile, supporting various vision tasks such as image and video recognition, OCR, and diagram interpretation, in addition to facilitating visual reasoning and 3D spatial awareness, all within a cohesive multilingual framework. Designed for compatibility across different languages and tasks, HunyuanVision aims to be open-sourced, providing access to checkpoints, a technical report, and inference support to foster community engagement and experimentation. Ultimately, this initiative encourages researchers and developers to explore and leverage the model's capabilities in diverse applications.
  • 9
    Gemini Enterprise Reviews
    Gemini Enterprise, an all-encompassing AI platform from Google Cloud, is designed to harness the full capabilities of Google’s sophisticated AI models, tools for creating agents, and enterprise-level access to data, seamlessly integrating these into daily workflows. This innovative solution features a cohesive chat interface that facilitates employee interaction with internal documents, applications, various data sources, and personalized AI agents. The foundation of Gemini Enterprise consists of six essential elements: the Gemini suite of large multimodal models, an agent orchestration workbench (previously known as Google Agentspace), ready-made starter agents, powerful data integration connectors for business systems, extensive security and governance frameworks, and a collaborative partner ecosystem for customized integrations. Built to scale across various departments and organizations, it empowers users to develop no-code or low-code agents capable of automating diverse tasks like research synthesis, customer service responses, code assistance, and contract analysis while adhering to corporate compliance regulations. Moreover, the platform is designed to enhance productivity and foster innovation within businesses, ensuring that users can leverage advanced AI technologies with ease.
  • 10
    Claude Haiku 4.5 Reviews

    Claude Haiku 4.5

    Anthropic

    $1 per million input tokens
    Anthropic has introduced Claude Haiku 4.5, its newest small language model aimed at achieving near-frontier capabilities at a significantly reduced cost. This model mirrors the coding and reasoning abilities of the company's mid-tier Sonnet 4, yet operates at approximately one-third of the expense while delivering over double the processing speed. According to benchmarks highlighted by Anthropic, Haiku 4.5 either matches or surpasses the performance of Sonnet 4 in critical areas such as code generation and intricate "computer use" workflows. The model is specifically optimized for scenarios requiring real-time, low-latency performance, making it ideal for applications like chat assistants, customer support, and pair-programming. Available through the Claude API under the designation “claude-haiku-4-5,” Haiku 4.5 is designed for large-scale implementations where cost-effectiveness, responsiveness, and advanced intelligence are essential. Now accessible on Claude Code and various applications, this model's efficiency allows users to achieve greater productivity within their usage confines while still enjoying top-tier performance. Moreover, its launch marks a significant step forward in providing businesses with affordable yet high-quality AI solutions.
  • 11
    MiniMax M2 Reviews

    MiniMax M2

    MiniMax

    $0.30 per million input tokens
    MiniMax M2 is an open-source foundational model tailored for agent-driven applications and coding tasks, achieving an innovative equilibrium of efficiency, velocity, and affordability. It shines in comprehensive development environments, adeptly managing programming tasks, invoking tools, and executing intricate, multi-step processes, complete with features like Python integration, while offering impressive inference speeds of approximately 100 tokens per second and competitive API pricing at around 8% of similar proprietary models. The model includes a "Lightning Mode" designed for rapid, streamlined agent operations, alongside a "Pro Mode" aimed at thorough full-stack development, report creation, and the orchestration of web-based tools; its weights are entirely open source, allowing for local deployment via vLLM or SGLang. MiniMax M2 stands out as a model ready for production use, empowering agents to autonomously perform tasks such as data analysis, software development, tool orchestration, and implementing large-scale, multi-step logic across real organizational contexts. With its advanced capabilities, this model is poised to revolutionize the way developers approach complex programming challenges.
  • 12
    Kimi K2 Thinking Reviews
    Kimi K2 Thinking is a sophisticated open-source reasoning model created by Moonshot AI, specifically tailored for intricate, multi-step workflows where it effectively combines chain-of-thought reasoning with tool utilization across numerous sequential tasks. Employing a cutting-edge mixture-of-experts architecture, the model encompasses a staggering total of 1 trillion parameters, although only around 32 billion parameters are utilized during each inference, which enhances efficiency while retaining significant capability. It boasts a context window that can accommodate up to 256,000 tokens, allowing it to process exceptionally long inputs and reasoning sequences without sacrificing coherence. Additionally, it features native INT4 quantization, which significantly cuts down inference latency and memory consumption without compromising performance. Designed with agentic workflows in mind, Kimi K2 Thinking is capable of autonomously invoking external tools, orchestrating sequential logic steps—often involving around 200-300 tool calls in a single chain—and ensuring consistent reasoning throughout the process. Its robust architecture makes it an ideal solution for complex reasoning tasks that require both depth and efficiency.
  • 13
    GPT-5.1-Codex Reviews

    GPT-5.1-Codex

    OpenAI

    $1.25 per input
    GPT-5.1-Codex is an advanced iteration of the GPT-5.1 model specifically designed for software development and coding tasks that require autonomy. The model excels in both interactive coding sessions and sustained, independent execution of intricate engineering projects, which include tasks like constructing applications from the ground up, enhancing features, troubleshooting, conducting extensive code refactoring, and reviewing code. It effectively utilizes various tools, seamlessly integrates into developer environments, and adjusts its reasoning capacity based on task complexity, quickly addressing simpler challenges while dedicating more resources to intricate ones. Users report that GPT-5.1-Codex generates cleaner, higher-quality code than its general counterparts, showcasing a closer alignment with developer requirements and a reduction in inaccuracies. Additionally, the model is accessible through the Responses API route instead of the conventional chat API, offering different configurations such as a “mini” version for budget-conscious users and a “max” variant that provides the most robust capabilities. Overall, this specialized version aims to enhance productivity and efficiency in software engineering practices.
  • 14
    SAM 3D Reviews
    SAM 3D consists of a duo of sophisticated foundation models that can transform a typical RGB image into an impressive 3D representation of either objects or human figures. This system features SAM 3D Objects, which accurately reconstructs the complete 3D geometry, textures, and spatial arrangements of items found in real-world environments, effectively addressing challenges posed by clutter, occlusions, and varying lighting conditions. Additionally, SAM 3D Body generates dynamic human mesh models that capture intricate poses and shapes, utilizing the "Meta Momentum Human Rig" (MHR) format for enhanced detail. The design of this system allows it to operate effectively with images taken in natural settings without the need for further training or fine-tuning: users simply upload an image, select the desired object or individual, and receive a downloadable asset (such as .OBJ, .GLB, or MHR) that is instantly ready for integration into 3D software. Highlighting features like open-vocabulary reconstruction applicable to any object category, multi-view consistency, and occlusion reasoning, the models benefit from a substantial and diverse dataset containing over one million annotated images from the real world, which contributes significantly to their adaptability and reliability. Furthermore, the models are available as open-source, promoting wider accessibility and collaborative improvement within the development community.
  • 15
    Olmo 3 Reviews
    Olmo 3 represents a comprehensive family of open models featuring variations with 7 billion and 32 billion parameters, offering exceptional capabilities in base performance, reasoning, instruction, and reinforcement learning, while also providing transparency throughout the model development process, which includes access to raw training datasets, intermediate checkpoints, training scripts, extended context support (with a window of 65,536 tokens), and provenance tools. The foundation of these models is built upon the Dolma 3 dataset, which comprises approximately 9 trillion tokens and utilizes a careful blend of web content, scientific papers, programming code, and lengthy documents; this thorough pre-training, mid-training, and long-context approach culminates in base models that undergo post-training enhancements through supervised fine-tuning, preference optimization, and reinforcement learning with accountable rewards, resulting in the creation of the Think and Instruct variants. Notably, the 32 billion Think model has been recognized as the most powerful fully open reasoning model to date, demonstrating performance that closely rivals that of proprietary counterparts in areas such as mathematics, programming, and intricate reasoning tasks, thereby marking a significant advancement in open model development. This innovation underscores the potential for open-source models to compete with traditional, closed systems in various complex applications.
  • 16
    DeepSeek-V3.2 Reviews
    DeepSeek-V3.2 is a highly optimized large language model engineered to balance top-tier reasoning performance with significant computational efficiency. It builds on DeepSeek's innovations by introducing DeepSeek Sparse Attention (DSA), a custom attention algorithm that reduces complexity and excels in long-context environments. The model is trained using a sophisticated reinforcement learning approach that scales post-training compute, enabling it to perform on par with GPT-5 and match the reasoning skill of Gemini-3.0-Pro. Its Speciale variant overachieves in demanding reasoning benchmarks and does not include tool-calling capabilities, making it ideal for deep problem-solving tasks. DeepSeek-V3.2 is also trained using an agentic synthesis pipeline that creates high-quality, multi-step interactive data to improve decision-making, compliance, and tool-integration skills. It introduces a new chat template design featuring explicit thinking sections, improved tool-calling syntax, and a dedicated developer role used strictly for search-agent workflows. Users can encode messages using provided Python utilities that convert OpenAI-style chat messages into the expected DeepSeek format. Fully open-source under the MIT license, DeepSeek-V3.2 is a flexible, cutting-edge model for researchers, developers, and enterprise AI teams.
  • 17
    DeepSeek-V3.2-Speciale Reviews
    DeepSeek-V3.2-Speciale is the most advanced reasoning-focused version of the DeepSeek-V3.2 family, designed to excel in mathematical, algorithmic, and logic-intensive tasks. It incorporates DeepSeek Sparse Attention (DSA), an efficient attention mechanism tailored for very long contexts, enabling scalable reasoning with minimal compute costs. The model undergoes a robust reinforcement learning pipeline that scales post-training compute to frontier levels, enabling performance that exceeds GPT-5 on internal evaluations. Its achievements include gold-medal-level solutions in IMO 2025, IOI 2025, ICPC World Finals, and CMO 2025, with final submissions publicly released for verification. Unlike the standard V3.2 model, the Speciale variant removes tool-calling capabilities to maximize focused reasoning output without external interactions. DeepSeek-V3.2-Speciale uses a revised chat template with explicit thinking blocks and system-level reasoning formatting. The repository includes encoding tools showing how to convert OpenAI-style chat messages into DeepSeek’s specialized input format. With its MIT license and 685B-parameter architecture, DeepSeek-V3.2-Speciale offers cutting-edge performance for academic research, competitive programming, and enterprise-level reasoning applications.
  • 18
    Marengo Reviews

    Marengo

    TwelveLabs

    $0.042 per minute
    Marengo is an advanced multimodal model designed to convert video, audio, images, and text into cohesive embeddings, facilitating versatile “any-to-any” capabilities for searching, retrieving, classifying, and analyzing extensive video and multimedia collections. By harmonizing visual frames that capture both spatial and temporal elements with audio components—such as speech, background sounds, and music—and incorporating textual elements like subtitles and metadata, Marengo crafts a comprehensive, multidimensional depiction of each media asset. With its sophisticated embedding framework, Marengo is equipped to handle a variety of demanding tasks, including diverse types of searches (such as text-to-video and video-to-audio), semantic content exploration, anomaly detection, hybrid searching, clustering, and recommendations based on similarity. Recent iterations have enhanced the model with multi-vector embeddings that distinguish between appearance, motion, and audio/text characteristics, leading to marked improvements in both accuracy and contextual understanding, particularly for intricate or lengthy content. This evolution not only enriches the user experience but also broadens the potential applications of the model in various multimedia industries.
  • 19
    Lux Reviews

    Lux

    OpenAGI Foundation

    Free
    Lux introduces a breakthrough approach to AI by enabling models to control computers the same way humans do, interacting with interfaces visually and functionally rather than through traditional API calls. Through its three distinct modes—Tasker for procedural workflows, Actor for ultra-fast execution, and Thinker for complex problem-solving—developers can tailor how agents behave in different environments. Lux demonstrates its power through practical examples such as autonomous Amazon product scraping, automated software QA using Nuclear, and rapid financial data retrieval from Nasdaq. The platform is designed so developers can spin up real computer-use agents within minutes, supported by robust SDKs and pre-built templates. Its flexible architecture allows agents to understand ambiguous goals, strategize over long timelines, and complete multi-step tasks without manual intervention. This shift expands AI’s capabilities beyond reasoning into hands-on action, enabling automation across any digital interface. What was once a capability reserved for large tech labs is now accessible to any developer or team. Lux ultimately transforms AI from a passive assistant into an active operator capable of working directly inside software.
  • 20
    Ministral 3 Reviews
    Mistral 3 represents the newest iteration of open-weight AI models developed by Mistral AI, encompassing a diverse range of models that span from compact, edge-optimized versions to a leading large-scale multimodal model. This lineup features three efficient “Ministral 3” models with 3 billion, 8 billion, and 14 billion parameters, tailored for deployment on devices with limited resources, such as laptops, drones, or other edge devices. Additionally, there is the robust “Mistral Large 3,” which is a sparse mixture-of-experts model boasting a staggering 675 billion total parameters, with 41 billion of them being active. These models are designed to handle multimodal and multilingual tasks, excelling not only in text processing but also in image comprehension, and they have showcased exceptional performance on general queries, multilingual dialogues, and multimodal inputs. Furthermore, both the base and instruction-fine-tuned versions are made available under the Apache 2.0 license, allowing for extensive customization and integration into various enterprise and open-source initiatives. This flexibility in licensing encourages innovation and collaboration among developers and organizations alike.
  • 21
    Qwen3-VL Reviews
    Qwen3-VL represents the latest addition to Alibaba Cloud's Qwen model lineup, integrating sophisticated text processing with exceptional visual and video analysis capabilities into a cohesive multimodal framework. This model accommodates diverse input types, including text, images, and videos, and it is adept at managing lengthy and intertwined contexts, supporting up to 256 K tokens with potential for further expansion. With significant enhancements in spatial reasoning, visual understanding, and multimodal reasoning, Qwen3-VL's architecture features several groundbreaking innovations like Interleaved-MRoPE for reliable spatio-temporal positional encoding, DeepStack to utilize multi-level features from its Vision Transformer backbone for improved image-text correlation, and text–timestamp alignment for accurate reasoning of video content and time-related events. These advancements empower Qwen3-VL to analyze intricate scenes, track fluid video narratives, and interpret visual compositions with a high degree of sophistication. The model's capabilities mark a notable leap forward in the field of multimodal AI applications, showcasing its potential for a wide array of practical uses.
  • 22
    Devstral 2 Reviews
    Devstral 2 represents a cutting-edge, open-source AI model designed specifically for software engineering, going beyond mere code suggestion to comprehend and manipulate entire codebases, which allows it to perform tasks such as multi-file modifications, bug corrections, refactoring, dependency management, and generating context-aware code. The Devstral 2 suite comprises a robust 123-billion-parameter model and a more compact 24-billion-parameter version, known as “Devstral Small 2,” providing teams with the adaptability they need; the larger variant is optimized for complex coding challenges that require a thorough understanding of context, while the smaller version is suitable for operation on less powerful hardware. With an impressive context window of up to 256 K tokens, Devstral 2 can analyze large repositories, monitor project histories, and ensure a coherent grasp of extensive files, which is particularly beneficial for tackling the complexities of real-world projects. The command-line interface (CLI) enhances the model's capabilities by keeping track of project metadata, Git statuses, and the directory structure, thereby enriching the context for the AI and rendering “vibe-coding” even more effective. This combination of advanced features positions Devstral 2 as a transformative tool in the software development landscape.
  • 23
    Devstral Small 2 Reviews
    Devstral Small 2 serves as the streamlined, 24 billion-parameter version of Mistral AI's innovative coding-centric model lineup, released under the flexible Apache 2.0 license to facilitate both local implementations and API interactions. In conjunction with its larger counterpart, Devstral 2, this model introduces "agentic coding" features suitable for environments with limited computational power, boasting a generous 256K-token context window that allows it to comprehend and modify entire codebases effectively. Achieving a score of approximately 68.0% on the standard code-generation evaluation known as SWE-Bench Verified, Devstral Small 2 stands out among open-weight models that are significantly larger. Its compact size and efficient architecture enable it to operate on a single GPU or even in CPU-only configurations, making it an ideal choice for developers, small teams, or enthusiasts lacking access to expansive data-center resources. Furthermore, despite its smaller size, Devstral Small 2 successfully maintains essential functionalities of its larger variants, such as the ability to reason through multiple files and manage dependencies effectively, ensuring that users can still benefit from robust coding assistance. This blend of efficiency and performance makes it a valuable tool in the coding community.
  • 24
    DeepCoder Reviews

    DeepCoder

    Agentica Project

    Free
    DeepCoder, an entirely open-source model for code reasoning and generation, has been developed through a partnership between Agentica Project and Together AI. Leveraging the foundation of DeepSeek-R1-Distilled-Qwen-14B, it has undergone fine-tuning via distributed reinforcement learning, achieving a notable accuracy of 60.6% on LiveCodeBench, which marks an 8% enhancement over its predecessor. This level of performance rivals that of proprietary models like o3-mini (2025-01-031 Low) and o1, all while operating with only 14 billion parameters. The training process spanned 2.5 weeks on 32 H100 GPUs, utilizing a carefully curated dataset of approximately 24,000 coding challenges sourced from validated platforms, including TACO-Verified, PrimeIntellect SYNTHETIC-1, and submissions to LiveCodeBench. Each problem mandated a legitimate solution along with a minimum of five unit tests to guarantee reliability during reinforcement learning training. Furthermore, to effectively manage long-range context, DeepCoder incorporates strategies such as iterative context lengthening and overlong filtering, ensuring it remains adept at handling complex coding tasks. This innovative approach allows DeepCoder to maintain high standards of accuracy and reliability in its code generation capabilities.
  • 25
    DeepSWE Reviews

    DeepSWE

    Agentica Project

    Free
    DeepSWE is an innovative and fully open-source coding agent that utilizes the Qwen3-32B foundation model, trained solely through reinforcement learning (RL) without any supervised fine-tuning or reliance on proprietary model distillation. Created with rLLM, which is Agentica’s open-source RL framework for language-based agents, DeepSWE operates as a functional agent within a simulated development environment facilitated by the R2E-Gym framework. This allows it to leverage a variety of tools, including a file editor, search capabilities, shell execution, and submission features, enabling the agent to efficiently navigate codebases, modify multiple files, compile code, run tests, and iteratively create patches or complete complex engineering tasks. Beyond simple code generation, DeepSWE showcases advanced emergent behaviors; when faced with bugs or new feature requests, it thoughtfully reasons through edge cases, searches for existing tests within the codebase, suggests patches, develops additional tests to prevent regressions, and adapts its cognitive approach based on the task at hand. This flexibility and capability make DeepSWE a powerful tool in the realm of software development.